Java自学者论坛

 找回密码
 立即注册

手机号码,快捷登录

恭喜Java自学者论坛(https://www.javazxz.com)已经为数万Java学习者服务超过8年了!积累会员资料超过10000G+
成为本站VIP会员,下载本站10000G+会员资源,会员资料板块,购买链接:点击进入购买VIP会员

JAVA高级面试进阶训练营视频教程

Java架构师系统进阶VIP课程

分布式高可用全栈开发微服务教程Go语言视频零基础入门到精通Java架构师3期(课件+源码)
Java开发全终端实战租房项目视频教程SpringBoot2.X入门到高级使用教程大数据培训第六期全套视频教程深度学习(CNN RNN GAN)算法原理Java亿级流量电商系统视频教程
互联网架构师视频教程年薪50万Spark2.0从入门到精通年薪50万!人工智能学习路线教程年薪50万大数据入门到精通学习路线年薪50万机器学习入门到精通教程
仿小米商城类app和小程序视频教程深度学习数据分析基础到实战最新黑马javaEE2.1就业课程从 0到JVM实战高手教程MySQL入门到精通教程
查看: 305|回复: 0

吴恩达机器学习笔记 —— 16 异常点检测

[复制链接]
  • TA的每日心情
    奋斗
    3 天前
  • 签到天数: 414 天

    [LV.9]以坛为家II

    1722

    主题

    1780

    帖子

    43万

    积分

    管理员

    Rank: 9Rank: 9Rank: 9

    积分
    435538
    发表于 2021-9-7 13:08:50 | 显示全部楼层 |阅读模式

    本篇介绍了异常点检测相关的知识

    更多内容参考 机器学习&深度学习

    我感觉这篇整理的很好很用心,可以详细参考:
    https://blog.csdn.net/Snail_Moved_Slowly/article/details/78826088

    什么是异常点检测?比如针对飞机的引擎做测试,x1代表温度、x2代表引擎的震动等等,希望判断新生产的引擎是否有问题。如果这个新的引擎在点的中心可能是正常的,如果离大部分的样本点都很远,那就可能是异常点。

    另外可以假设有一个模型可以预测概率,如果P<ξ,就是异常点;如果P>ξ就是正常点。再比如消费者的信用行为、数据中心的监控等等。

    高斯分布也叫做正态分布,描述了数据分布的情况

    使用高斯分布进行异常点检测的算法流程:
    1 选择可能产生异常值影响的特征
    2 计算每个特征的平均值和方差
    3 基于方差和均值计算p(x)

    得到结果后就可以进行异常点的判断了,比如ξ选择了0.02,那么就可以对各个样本点进行对比,小于它的,就认为是异常点。

    那么如何开发一个异常点检测的应用呢。如果能有部分的样本带有标注y=1或者y=0,就可以基于这些数据做为模型的评价了。如果我们有10000个正常点,20个异常点。那么可以分配6000个正常点作为训练集,10个异常点+2000个正常点作为验证集,剩下的作为测试集。然后使用P R F1做为模型的评估。

    异常点检测和监督学习还是不同的:首先就是异常点检测异常样本极少,而监督学习要求正常样本点和异常点都很多才行。在数据分布方面,高斯分布需要各个维度都保持在正态分布;模型训练方面,异常点只是在验证集与测试集上起作用。

    在使用高斯分布之前应该把数据构造成正态分布的样子,否则就是用一些Log或者开方等方法,使得图形贴近高斯分布。如果选择了一个特征,结果异常点在样本点中间,那么最好能开发一些新的特征,使得这个异常点脱离正常点。

    多元高斯分布是高斯分布的一种特殊情况,他们也有不同的使用场景:
    1 高斯分布需要手动设计特征;多变量多元高斯分布则可以自己捕获特征
    2 高斯分布的计算代价比较小;
    3 高斯分布在m样本量比较少的时候也无所谓;多元高斯分布由于要构造一个矩阵,所以需要保证m有足够的量

    多元高斯分布的出现主要是解决多个特征拟合后,虽然在自己的维度都不属于异常点,但是通过多元的作用,就可以把异常点排除。

    哎...今天够累的,签到来了1...
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    QQ|手机版|小黑屋|Java自学者论坛 ( 声明:本站文章及资料整理自互联网,用于Java自学者交流学习使用,对资料版权不负任何法律责任,若有侵权请及时联系客服屏蔽删除 )

    GMT+8, 2022-10-7 09:55 , Processed in 0.062840 second(s), 29 queries .

    Powered by Discuz! X3.4

    Copyright © 2001-2021, Tencent Cloud.

    快速回复 返回顶部 返回列表